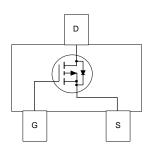

NDS352P


General Description

These P-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as notebook computer power management, portable electronics, and other battery powered circuits where fast high-side switching, and low in-line power loss are needed in a very small outline surface mount package.

Features

- -0.85A, -20V. $R_{DS(ON)} = 0.5\Omega$ @ $V_{GS} = -4.5V$.
- Proprietary package design using copper lead frame for superior thermal and electrical capabilities.
- High density cell design for extremely low R_{DS(ON)}.
- Exceptional on-resistance and maximum DC current capability.
- Compact industry standard SOT-23 surface mount package.

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		NDS352P	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage - Continuous		±12	V
I _D	Maximum Drain Current - Continuous	(Note 1a)	±0.85	A
	- Pulsed		±10	
P _D	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T _J ,T _{STG}	Operating and Storage Temperature Range		-55 to 150	°C
THERMA	L CHARACTERISTICS			_
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		250	°C/W
θJA		(Note 1a)		
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

NDS352P

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHA	RACTERISTICS	<u>.</u>				•	•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-20			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$				-5	μA
			T _J =125°C			-20	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 12 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -12 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHAR	ACTERISTICS (Note 2)						
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$		-0.8	-1.6	-2.5	V
			T _J =125°C	-0.5	-1.3	-2.2	
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_{D} = -0.85 \text{ A}$			0.46	0.5	Ω
			T _J =125°C		0.59	0.7	
		$V_{GS} = -10 \text{ V}, I_{D} = -1 \text{ A}$				0.35	
I _{D(ON)}	On-State Drain Current	$V_{GS} = -4.5 \text{ V}, \ V_{DS} = -5 \text{ V}$		-2			Α
g _{FS}	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_{D} = -0.85 \text{ A}$			1.5		S
DYNAMIC	CHARACTERISTICS	1				,	
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1.0 \text{ MHz}$			125		pF
C _{oss}	Output Capacitance				140		pF
C _{rss}	Reverse Transfer Capacitance				45		pF
SWITCHII	NG CHARACTERISTICS (Note 2)						
$\mathbf{t}_{d(on)}$	Turn - On Delay Time	$V_{DD} = -10 \text{ V}, \ I_{D} = -1 \text{ A},$ $V_{GS} = -10 \text{ V}, \ R_{GEN} = 50 \Omega$			8	15	ns
t _r	Turn - On Rise Time				19	30	ns
$t_{d(off)}$	Turn - Off Delay Time				64	90	ns
t _f	Turn - Off Fall Time				61	90	ns
Q_g	Total Gate Charge	$V_{DS} = -10 \text{ V}, I_{D} = -0.85 \text{ A},$ $V_{GS} = -5 \text{ V}$			2.2	4	nC
Q_{gs}	Gate-Source Charge					1	nC
Q_{gd}	Gate-Drain Charge					2	nC

NDS352P

Electrical Characteristics (T _A = 25°C unless otherwise noted)									
Symbol	Parameter Conditions		Min	Тур	Max	Units			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
Is	Maximum Continuous Drain-Source Diode Forward Current				-0.6	Α			
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				-5	Α			
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = -0.85 A (Note 2)		-0.92	-1.2	V			

Notes

1. R_{gax} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{gac} is guaranteed by design while R_{gcA} is determined by the user's board design.

$$P_{D}(t) = \frac{T_{J} - T_{A}}{R_{\theta J} \cdot \hat{A}^{t}} = \frac{T_{J} - T_{A}}{R_{\theta J} \cdot \hat{c}^{t} R_{\theta C} \hat{A}^{t}} = I_{D}^{2}(t) \times R_{DS(ON) \cdot \mathbf{\hat{e}} T_{J}}$$

Typical $R_{_{\theta^{JA}}}$ using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

a. 250°C/W when mounted on a 0.02 in² pad of 2oz cpper.

b. 270°C/W when mounted on a 0.001 in² pad of 2oz cpper.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.